Dithiocarbamates

B.K. Schindler

PROOF-ACS GmbH, Tempowerkring 1, 21079 Hamburg, Germany; email: birgit.schindler@proof-acs.de

Previous proficiency tests: lessons learned

- Rapid breakdown of dithiocarbamates in aqueous solutions [1].
- The degradation product CS, is highly volatile.
- Reaction kinetics are highly influenced by temperature.
- ➔ Significant losses of dithiocarbamates are reported during test material preparation by different PT providers [2-7].

Preparation at room temperature:

➔ Loss of up to 100 % during homogenisation [2].

PT providers usually prepare test materials of dithiocarbamates while cooling with dry ice (-78°C).

- → Degradation of > 40 % [3], 70 % [4, 5] or even up to 80 % [9] of the spiked dithiocarbamates.
- ➔ Dry ice is not cold enough to completely avoid degradation.

Technical improvements

Temperature

From 2015 on, liquid nitrogen (-195 °C) is used throughout the whole process of test material preparation in PROOF-ACS PTs related to dithiocarbamates [7-9].

- Homogenisation, spiking and sub-sampling is feasible without degradation / loss of CS₂.
- → Recoveries of the spiked levels are close to 100 % in strawberries, tomatoes and rasperries [8, 9].

Influence of pH

DT50 values of thiram in aqueous solutions (all @ 25 °C) [1, 10]:

- 68.5 days @ pH 5 3.5 days @ pH 7
- . 6.9 hours @ pH 9
- **→** High impact of different pH values of fruits and vegetables on degradation of dithiocarbamates.

Lessons learned from P1510-RT and P1624-RT [7, 8]:

Liquid nitrogen is used during preparation of both homogenates.

- → Matrix strawberry: 95 % recovery of the spiked level.
- ➔ Matrix lettuce: 11 % recovery of the spiked level.

pH (lettuce): 5.8-6.1 >> pH (strawberry): 3.0-3.9 [11, 12].

- → High impact of pH on the stability of thiram.
- ➔ Adjust pH if necessary.

Texture

- Usually frozen homogenates are provided in PTs.
- Handling differs from the routine procedures. • Freeze-thaw cycles in the labs are a major source of
- error in PTs.
- A fine, powdery material, which can be taken of the box without freeze-thawing cycles is provided in P1715-RT (see picture below).

How to improve dithiocarbamates PTs

Due to the low recoveries, the comparability criterion (z-score) is applied for evaluation in common PTs. Thus,

- the outcome of the PT highly depends on the quality of the submitted results.
- laboratories, which found a proper way to avoid • degradation might be punished with z-scores > 2 even though their results are closer to the true dithiocarbamate content in the sample.
- Analytical results should not only be comparable, but reflect the true dithiocarbamate content in the sample.

To do:

1. Preparation of a spiked test material without degradation of dithiocarbamates.

2. Application of the trueness criterion for evaluation.

Proof of concept - P1715-RT

- No degradation of thiram in both test materials (raspberry/tomato) [9].
- The trueness criterion is applied for evaluation: results within 70 to 120% of the spiked level are considered satisfying.
- Test material tomato: eight out of twelve laboratories reported satisfying results. The assigned value is 103 % of the spiked level of 0.14 mg/kg.
- Results are similar related to the test material raspberry (not shown, assigned value: 106 % of the spiked level of 0.088 mg/kg).

P1715-RT: Test material tomato [9].

Summary

- Homogenisation and spiking of test samples is feasible without losing CS₂.
- Use liquid nitrogen to control temperature.
- Adjust pH.
- Powdery material should be preferred to avoid freeze-thaw-cycles.
- Dithiocarbamate PTs are an artificial situation. The sample preparation, with a high impact on the quality of the analytical results is not part of the PT. Instead, a powdery test sample is provided. The robust standard deviations and the recoveries of the spiked levels thus reflect the analytical part of the dithiocarbamate analysis only.
- The findings on the behaviour of dithiocarbamates during the preparation of PT samples should build the basis for a discussion of the sample preparation of dithiocarbamates in routine. It should be questioned if and how the sample preparation procedure of dithiocarbamates can be improved in routine analysis.

Acknowledgement

Many thanks to the team of Wessling GmbH, Berlin for the hospitality and the practical support and for sharing the hands-on experience with the handling of liquid nitrogen during sample preparation.

REFERENCES: [1] BCPC (British Crop Production Council). Pesticide manual [Internet]. Available from: http://pmonline.azurewebsites.net/_Main/Pesticide.aspx#cpLArticle_rbWiewResults [2] Reynolds S (2006). Analysis of Dithiocarbamates, SELAMAT Workshop. [3] EU Reference Laboratories for Residues of Pesticides (2012). EU Proficiency Test on the Analysis of Spiked and Incurred Pesticides in Milled Dry Lentis – EUPT-SRM7. [4] FAPAS (2015). FAPAS Report 19187 – Pesticides Residues in Pear [5] Lach & Bruns Consulting Chemists (2012). Dithiocarbamates/BEAMAT Workshop. [3] EU Reference Laboratories for Residues samples. [6] Bipea (2012). Litertaboratory comparisons report lettuce 19e – 329. [7] PR00F-AXS GmbH (2015). FIS2A-RT Dithiocarbamates in grapes and lettuce. [8] PR00F-AXS GmbH (2015). FIS10-MRT Method Ring Test Dithiocarbamates in pears and strawberries. [9] PR00F-AXS GmbH (2017). PT175-RTD Dithiocarbamates in capacity of Hertordshire (2014) Pesticide Propriets Database. [10] University of Hertordshire (2014) Pesticide (2014) Pesticide Hertore Propriets Database. PR00F-AXS GmbH (2017). http://cfsan.fda.gov/-comm/lacf-phs.htm [12] University of Wisconsin-Madison. pH Values of common foods and ingredients. p. 98–99.

